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Abstract

The shape-adjustable curve constructed by uniform B-spline basis function with parameter is an extension of uniform B-spline curve.
In this paper, we study the relation between the uniform B-spline basis functions with parameter and the B-spline basis functions. Based
on the degree elevation of B-spline, we extend the uniform B-spline basis functions with parameter to ones with multiple parameters.
Examples show that the proposed basis functions provide more flexibility for curve design.
� 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

B-spline curves are widely used in computer-aided geo-
metric design and other associated fields, due to their excel-
lent mathematical and algorithmic properties. In practical
applications, designers often need manipulating a given
curve into a desired shape. Traditionally, after we adopt
a set of B-spline basis functions to construct curves, the
shape of these curves can only be modified by adjusting
control points. However, sometimes the designers may pre-
fer to get different curves without changing the control
points. To this end, we hope to construct shape-adjustable
curves with fixed control points, namely, there exist appro-
priate flexibilities in the representations of the curves.

It is known that rational curves provide considerably
more flexibilities in curve design than polynomial curves
do, owing to the weights in their representations. We can
also obtain curves with different shapes by choosing differ-
ent weight values instead of moving control points. How-
ever, due to their fractional expressions, it is not easy to
calculate the derivatives and integrals of the rational
curves. Moreover, it is difficult to choose appropriate

weight values to obtain a curve with desired shape. Fortu-
nately, shape-adjustable curves can also be constructed by
basis functions containing independent parameter, i.e.
shape parameter. The earlier research using shape parame-
ter to handle the curve shape design problem can be traced
back to the paper of Barsky [1], in which the so called Beta
spline and the concept of shape parameter were proposed.
So far, many curves with single shape parameter have been
developed, such as uniform B-spline polynomial curves
with parameter, Bézier curves with parameter, C-Bézier
curves, trigonometric/hyperbolic polynomial uniform
B-spline with parameter and so on [2–10]. The curves con-
structed by these basis functions have many good proper-
ties similar to the corresponding ordinary (without
parameters) ones.

Among the studies mentioned above, there are two liter-
atures focusing on the construction of uniform B-spline
curves with shape parameter. Han and Liu [2] proposed
an extension of cubic uniform B-spline curves, where one
shape parameter is introduced. And the uniform B-spline
curves with a parameter of arbitrary degree (abbreviated
as UBP basis functions herein) were defined by an integral
recurrence formula in Ref. [6]. It can be easily verified that
the basis functions proposed in Ref. [2] are the 4th order
UBP basis functions proposed in Ref. [6].
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What we are interested in this study is the structure of
UBP basis functions. We observed that, with the same
order, the degree of UBP basis function was higher than
that of B-spline basis functions. This difference guarantees
the flexibility of the UBP basis functions. Furthermore, we
found that UBP basis functions could be represented as lin-
ear combinations of B-spline basis functions (with a refined
knot sequence), where the coefficients are expressed by the
shape parameter. By comparing these combinations with
the degree elevation formula of the B-spline basis func-
tions, we are inspired to construct uniform B-spline basis
functions with multiple parameters. These basis functions
include the UBP basis functions, and share most nice prop-
erties with the UBP basis functions. The number of the
shape parameters increases with the order of the basis
functions.

2. Preliminary

2.1. B-spline basis functions

As the basic theory of B-spline is well known, we only
give a brief summary of the concepts and notations. More
details can be seen in Refs. [11–14].

The non-decreasing sequence of real numbers
T ¼ ft0; . . . ; tng; ti 6 tiþ1; i ¼ 0; . . . ; n� 1 is called the knot
vector, where ti is the knot. For i ¼ 0; 1; . . . ; k, the kth
order ((k � 1)th degree) B-spline basis functions ~N i;kðtÞ
(or abbreviated as ~Ni;kÞ associated with knot vector T are
defined as

~N i;1ðtÞ ¼
1 ti 6 t < tiþ1

0 otherwise

�

~N i;kðtÞ ¼
t � ti

tiþk�1 � ti

~N i;k�1ðtÞ þ
tiþk � t

tiþk � tiþ1

~N iþ1;k�1ðtÞ

If the knots are equispaced ðti � ti�1 ¼ d; i ¼ 1; . . . ; nÞ, the
B-spline basis functions will be assumed to be uniform,
which are consistent under shifts ~Niþ1;kðtÞ ¼ ~Ni;kðt � dÞ.
By increasing the multiplicity of each knot of T by one,
we obtain a refined knot sequence, and denote it by T �.
The kth order B-spline basis functions defined over T �

will be denoted as ~N �i;kðtÞ or ~N �i;k. By degree elevation, a
kth order B-spline basis function associated with T can
be presented as linear combinations of the (k + 1)th order
B-spline basis functions associated with T �. Namely,

~Ni;kðtÞ ¼
Xq

j¼p

aj;kN �i;kþ1ðtÞ ð1Þ

where the support of N �i;kþ1ðtÞ,j ¼ p; . . . ; q is included in the
support of ~N i;kðtÞ, and coefficients aj;k, j ¼ p; . . . ; q are
determined by T � [12].

2.2. Uniform B-spline basis functions with parameter

The kth order UBP basis functions �N i;kðtÞ, i ¼ 0; . . . ; k
proposed in Ref. [6] are recursively defined as

�N 0;2ðtÞ ¼

3
2
kt2 þ ð1� kÞt 0 6 t < 1

3
2
kð2� tÞ2 þ ð1� kÞð2� tÞ 1 6 t < 2

0 other

8><
>:

and

�N 0;kðtÞ ¼
Z t

t�1

�N 0;k�1ðtÞ; �Ni;kðtÞ ¼ �N 0;kðt � iÞ ð2Þ

When k equals to 0, the UBP basis functions are B-spline
basis functions. UBP basis functions share most properties
with the uniform B-spline basis functions, such as non-neg-
ativity, local support, partition of unity, order of continuity
(the kth order UBP basis functions are (k � 1) times
continuously differentiable), linear independence and
symmetry ð�N 0;kðtÞ ¼ �N 0;kðk � tÞÞ. Besides, their derivatives
satisfy

�N 00;kðtÞ ¼ �N 0;k�1ðtÞ � �N 1;k�1ðtÞ ¼ �N 0;kðtÞ � �N 0;k�1ðt � 1Þ ð3Þ

3. Structure of uniform B-spline basis functions with

parameter

In this section, we study the structure of the UBP basis
functions. We have the theorem as follows.

Theorem 1. UBP basis functions �Ni;k defined over T and

B-splines basis functions N �i;kþ1 defined over T �are related by

�N 0;k ¼
Xk

i¼0

ki;kN �i;kþ1 and �N i;kðtÞ ¼ �N 0;kðt � iÞ ð4Þ

where the coefficients ki;k are given by

k0;3¼ k3;3¼
1�k

6
;k1;3¼ k2;3¼

5þk
6

ð5Þ

ðk0;k; . . . ;kk;kÞ¼ ðk0;k�1; . . . ;kk�1;k�1Þ

k
2b c
k

k
2b c
k 0 0 . . . 0

0
k
2d e
k

k
2d e
k 0 . . . 0

..

.
0

k
2b c
k . . . 0

..

. ..
. ..

.

0 0 0 . . .
k
2b c
k

0
BBBBBBBBBB@

1
CCCCCCCCCCA

k�kþ1

ð6Þ

Proof. We prove this theorem by induction method. The
theorem can be easily verified in the case of k ¼ 3. Now
assume that this theorem holds in the case of k ¼ l� 1, i.e.

�N 0;l�1 ¼
Xl�1

i¼0

ki;l�1N �i;l

where ki;l�1 are parameters given by Eqs. (5) and (6). From
Eq. (3) and

N �i;lðs� 1Þ ¼ N �iþ2;lðsÞ;

N �i;lþ1
0 ¼ 1

tiþl � ti
N �i;l �

1

tiþlþ1 � tiþ1

N �iþ1;l

it follows that
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�N 0;lðtÞ ¼
Z t

�1
�N 0;l�1ðsÞ � �N 0;l�1ðs� 1Þds

¼
Z t

�1

Xl�1

i¼0

ki;l�1N �i;lðsÞ �
Xl�1

i¼0

ki;l�1N �i;lðs� 1Þds

¼
Z t

�1

Xl�1

i¼0

ki;l�1N �i;lðsÞ �
Xl�1

i¼0

ki;l�1N �iþ2;lðsÞds

¼
Xl�1

i¼0
ki;l�1di;l

Z t

�1
ðN �i;lþ1ðsÞ

0 þ N �iþ1;lþ1ðsÞ
0Þds

¼
Xl�1

i¼0
ki;l�1di;lðN �i;lþ1ðtÞ þ N �iþ1;lþ1ðtÞÞ

¼
Xl

i¼0
ki;lN �i;lþ1ðtÞ

where

ki;l ¼ ki�1;l�1di�1;l þ ki;l�1di;l

and

di;l¼
tiþl�ti

l i¼ 0; . . . ;l�1

0 i¼�1;l

�
¼

1
2

l is even; i¼ 0; . . . ;l
l�1
2l l is odd; i¼ 0;2; . . . ;l�1

lþ1
2l l is odd; i¼ 1;3; . . . ;l

8><
>:

Hence, the theorem holds in the case of k ¼ l, which com-
pletes the proof.

Theorem 1 illustrates that a kth order UBP basis
function defined over T are polynomials of degree k,
which can be presented as a linear combination of
the (k + 1)th order B-spline basis functions defined over
T �. And the combination form is similar to the
B-spline degree elevation formula Eq. (2), except that
the coefficients here are variables with respect to k.
Additionally, the coefficients ki;k have the properties as
follows.

Remark 1. The coefficients in Eq. (6) satisfy

0 6 ki;k ¼ kk�i;k 6 1 for i ¼ 0; . . . ;
k
2

� �

and

Xk
2b c

i¼0

k2i;k ¼
Xk�1

2b c

i¼0

k2iþ1;k ¼ d0;k þ d1;k ¼ 1

For any polynomial, one degree of freedom can be
introduced to its expression by raising its degree by one.
Note that B-spline basis functions are piecewise polynomi-
als. Therefore, degree elevation method can theoretically
introduce multiple degrees of freedom into the expressions
of B-spline curves. However, Theorem 1 reveals that, the
UBP basis functions are the revised B-spline basis func-
tions, whose expressions are modified by inserting only
one parameter by the degree elevation of B-spline. Thus,
we will study if there are other more general uniform
B-spline basis functions with multiple parameters in the
next section.

4. General B-spline basis functions with multiple parameters

In this section, we will propose the new uniform B-spline
basis functions with parameters by the degree elevation of
B-spline, in which the possibly greatest degree of the free-
dom is exploited. The obtained basis functions will include
UBP basis functions and have all the properties mentioned
in Section 2.2. We call the basis functions proposed here
the general B-spline basis functions with multiple parame-
ters, abbreviated as GUBP basis functions. The kth order
GUBP will be denoted by N i;kðtÞ or Ni;k. The main idea
to construct the kth order GUBP is replacing all the con-
stant coefficients ai:k in the degree elevation formula Eq.
(2) with independent parameters, and adding appropriate
restrictions to these independent parameters to guarantee
the properties mentioned in subsection 2.2.

In the rest of this section, we will go into the details of
the construction process.

Note that when i ¼ 0, p and q in Eq. (2) equal to 0 and k,
respectively. By substituting independent parameters lj;k

for constant coefficients aj;k in Eq. (2), we obtain a rough
kth order GUBP basis function as

N 0;k ¼
Xk

i¼0

li;kN �i;kþ1 ð7Þ

Other basis functions are defined by shifts

Ni;kðtÞ ¼ N 0;kðt � iÞ ð8Þ

The rest work is to restrict lj;k appropriately to ensure
the properties of GUBP basis functions mentioned above.
Since GUBP basis functions are consistent under the shifts
Eq. (8), we only need to deal with N 0;k in some cases in the
following discussion. First, we require that all the parame-
ters are non-negative, i.e.

li;k P 0 for i ¼ 0; . . . ; k

It follows that all GUBP basis functions hold the proper-
ties of non-negative, local support and order of continuity.

Now we deal with the property of symmetry based on
the observation of the images of N �i;k (see Fig. 1). Note that
all the knots of T � are multiple knots of multiplicity two
and then N �i;k satisfy the relations

N �2i;kðtÞ ¼ N �0;kðt � iÞ
N �2iþ1;kðtÞ ¼ N �1;kðt � iÞ

(

We classify N �i;k into two kinds, e-kind and o-kind, accord-
ing to subscript i being even or odd. Note that N �i;kþ1 and
N �k�i;kþ1 are symmetrical with respect to axis t ¼ k

2

� �
. Hence,

in order to keep the property of symmetry of N 0;k, the fol-
lowing restriction on the parameters lj;k is required:

li;k ¼ lk�i;k; for i ¼ 0; 1; . . . ;
k
2

� �

We still have to tackle the property of partition of
unity. Note that the support interval of an e-kind
(o-kind) basis function is kþ1

2

� �
ð kþ1

2

	 

Þ, which implies that
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each e-kind (o-kind) basis function is simultaneously
involved in the representation of kþ1

2

� �
ð kþ1

2

	 

Þ GUBP

basis functions. For example, when k is even, Eq. (7)
implies that N �k;kþ1, associated with parameter lk;k, are
included in the expression of N 0;k (see Fig. 1). Simulta-
neously, we can infer easily from Eq. (7) that N �k;kþ1 engages
in the expressions of N 1;k;N 2;k; . . . ;N k

2�1;k and N k
2;k

, with cor-
responding parameters lk�2;k; lk�4;k; . . . ; l1;k and l0;k. Thus,
in order to guarantee the property of partition of unity of
GUBP basis functions, all parameters before the same basis
function N �i;kþ1 must be summed to 1, i.e.

Xk
2b c

i¼0

l2i ¼ 1 and
Xk�1

2b c

i¼0

l2iþ1 ¼ 1

Finally, since B-spline basis functions are linearly inde-
pendent, the linear independence of GUBP basis functions
becomes a natural result.

Now, we give the formal definition of GUBP basis func-
tions as follows.

Definition. The kth ðk P 3Þ order general uniform B-spline
basis functions with parameters associated with knot
vector T are defined as

N 0;k ¼
Xk�1

2b c

i¼0

li;kðN �i;kþ1 þ N �k�i;kþ1Þ þ
lk

2;k
N �k

2;kþ1
k is even

0 k is odd

(

where N �i;kþ1 are B-spline basis functions associated with the
refined knot vector T � and for integer n P 1, 0 6 li;k 6 1
satisfy

Pn�1

i¼0

l2i;k þ 1
2
l2n;k ¼ 1

2
;
Pn�1

i¼0

l2iþ1;k ¼ 1
2

k ¼ 4n

Pn
i¼0

l2i;k ¼ 1
2
;
Pn�1

i¼0

l2iþ1;k þ 1
2
l2nþ1;k ¼ 1

2
k ¼ 4nþ 2

Pk�1
2

i¼0

li;k ¼ 1 k ¼ 4n� 1; 4nþ 1

8>>>>>>>><
>>>>>>>>:

ð9Þ

Remark 2. Eq. (9) implies that the parameters contained in
the kth order GUBP basis functions have freedom of
degree k�1

2

� �
.

Theorem 1 also implies that we can convert GUBP basis
functions to UBP basis functions by setting li;k ¼ ki;k for
i ¼ 0; . . . ; k

2

	 

. In other words, GUBP basis functions

subsume the UBP basis functions as special cases. Fur-
thermore, it can be checked that the rules of the parameters
ki;k presented in Remark 1 satisfy restrictions Eq. (9), which

Fig. 2. Two digital ceramic vessels.

Fig. 3. The 5th order UBP curves with k ¼ 0:25; 0:5; 0:75; 1.

Fig. 1. The images of B-spline basis functions defined over T and T �. Dot lines denote ~N 0;k defined over T, solid lines and dash lines denote e-kind and o-
kind of N �i;kþ1 defined over T �, respectively. (a) k ¼ 4; (b) k ¼ 5.
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endows the UBP basis functions with the aforementioned
properties.

5. Examples

In this section, we give some examples of the application
of vessel styling design. We call the curves constructed by
GUBP basis functions and UBP basis functions GUBP
curves and UBP curves, respectively. According to Remark
2, GUBP curves with order higher than 4 contained more
than one shape parameters. For example, the 5th order
GUBP curves have two freedom parameters, since their three
parameters l0;5; l1;5; l2;5 are under the restriction l0;5 þ l1;5þ
l2;5 ¼ 1. Hence, we can choose, e.g. l0;5 and l2;5, as shape
parameters, then l1;5 can be decided by l1;5 ¼ 1� l0;5 � l2;5.

Two vessels constructed by the 4th order GUBP basis
functions under fixed control polygons are shown in Fig. 2.
Curves with different colors are obtained by choosing differ-
ent shape parameters. The fifth order UBP curves and
GUBP curves under the same control polygon are shown
in Fig. 3 and Fig. 4, respectively. The UBP curves displayed
in Fig. 3 are curves with shape parameter k being 0.25, 0.5,
0.75 and 1. The GUBP curves shown in Fig. 4a are obtained
by setting l0;5 ¼ l2;5 ¼ 0:25; 0:3; 0:4; 0:45. By fixing l0;5 ¼
0:3 and assigning 0.5, 0.55, 0.6, 0.65 to l2;5, we obtain the
5th order GUBP curves in Fig. 4b. We can see that the UBP
curve shapes shown in Fig. 3 are lack of variety. On the con-
trary, the GUBP curves shown in Fig. 4 have more changeful
shapes. In particular, the shapes shown in Fig. 4b are more
acceptable as a vase shape. These examples show that the
GUBP curves provide more flexibility than the UBP curves.

6. Conclusion

We have proposed the GUBP basis functions based on
the degree elevation of B-spline, which are the extensions

of the known UBP basis functions. Compared with the
existing one, the GUBP basis functions (with order higher
than four) are advantageous in having more than one
shape parameter. Additionally, the number of the shape
parameters will increase with the order of the GUBP basis
functions. Examples show that curves constructed by the
basis functions proposed in this paper have profuse shapes.
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